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Abstract. We have calculated binding and transition energies of the ground and some excited
states of a shallow donor impurity in a disc-shaped GaAs quantum dot (QD), under the action of a
magnetic field applied in the axial direction. The binding energies were obtained using the effective-
mass approximation within a variational scheme, assuming an infinite confinement potential at all
surfaces. Our results were obtained for several dot radii, the impurity position along thez-direction,
and as a function of the applied magnetic field. We found that some excited states are not bounded
for some values of the radius of the dot and of the applied magnetic field. We have shown how
the applied magnetic field split the degeneracy of some excited states. Also, we have compared
our results with those found in GaAs–(Ga, Al) As quantum wells (QWs) and quantum-well wires
(QWWs).

1. Introduction

The great progress in crystal growth techniques, such as molecular beam epitaxy (MBE),
metal–organic chemical-vapour deposition (MOCVD) and chemical lithography have made
possible the fabrication of a wide variety of semiconductor heterostructures, where the quantum
mechanical nature of the electrons plays an important role [1–3]. Also, extensive theoretical
and experimental investigations on optical and electronic properties, excitons and impurity
levels [4–16] in QDs and QWWs have been published. The effects of applied magnetic
fields on the physical properties of low dimensional systems are studied with the proposal
of understanding the fascinating novel phenomena and of creating new devices or improving
the performance of the existing ones. Although magnetic field effects seem to have less
technological significance, they provide a far richer insight into semiconductor physics than
is possible by studying electrons in electric fields. The magnetic fields have become crucial
ingredients of characterization techniques used to evaluate the semiconductor physics.

In QDs there have been published numerous theoretical works on hydrogenic impurity
states. Chuuet al [9] studied the binding energies of hydrogenic impurity states with an
impurity atom located at the centre of a spherical QD. They assumed an infinite confinement
potential and the impurity eigenfunctions are expressed in terms of Whittaker functions and
Coulomb scattering functions. The calculated ground state energy of the impurity approaches
the correct limit of the three dimensional hydrogen atom as the radius of the QD becomes
very large and increases significantly as the radius goes to zero. Porras-Montenegro and
Pérez-Merchancano [10] have calculated the donor binding energies in spherical QDs using a
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variational method. Liet al [14] calculated the donor binding energies of the ground state in a
disc-shaped QD under the action of a uniform magnetic field applied parallel to the disc axis.

In this work, we calculate the binding energy and some transition energies associated with
the ground and some excited states of a hydrogenic donor impurity located at the axis of a
disc-shaped GaAs QD, under the action of a magnetic field applied in the axial direction. We
use the effective-mass approximation within the variational approach. In section 2 we present
the theory followed for this calculation. Our results and discussion are presented in section 3,
and conclusions in section 4.

2. Theory

In the effective-mass approximation, the Hamiltonian of a donor impurity located at the centre
of a quantum disc of GaAs of radiusR and lengthL, with infinite confinement potential at all
surfaces and in the presence of an applied magnetic fieldB = Bz, can be written as:

H = 1

2m∗
[
P − e

c
A
]2
− e2

εr
+ V (ρ) (1)

where the first term in equation (1) is the kinetic energy of the electron of the impurity in a
magnetic field, the second term corresponds to the potential energy of the impurity and the
last term is the confinement potential. Herer =

√
ρ2 + z2, z is the relative coordinate of the

separation between the electron and the ion of the impurity in the axial direction of the QD,
ε is the dielectric constant of the GaAs,m∗ is the electron effective mass,A(r) is the vector
potential of the magnetic field, andV (ρ) is the confinement potential defined as

V (ρ) =
{

0 06 ρ 6 R and|z| 6 L/2
∞ ρ > R and|z| > L/2.

(2)

The vector potential is written asA(r) = 1
2(B × r), with B = Bz. In cylindrical

coordinates the components of the vector potential are

Aρ = Az = 0 Aϕ = 1
2(Bρ). (3)

The Hamiltonian of the system can be written in cylindrical coordinates and effective
Rydbergs as

H = −∇2 − iγ

(
∂

∂ϕ

)
+
γ 2ρ2

4
− 2

r
+ V (ρ) (4)

where we have used the atomic units of lengtha∗ = εh̄2/(m∗e2) and energyR∗ = e2/(2εa∗).
In equation (4),γ = eh̄B/(2m∗cR∗) is the measure of the electron energy in the first Landau
level (n = 0), due to the action of the magnetic field. For GaAs [10–14]m∗ = 0.065,
ε = 12.58,a∗ ∼= 100 Å andR∗ = 5.83 meV.

Due to the inclusion of the impurity potential in the Hamiltonian, equation (1), the
Schr̈odinger equation can not be analytically solved. Following Brown and Spector [17],
we assume suitable variational wave functions, for the different impurity states, as the product
of the hydrogenic part and the appropriate confluent hypergeometric function. The latter is
the radial part of the wave function of the electron in the disc-shaped cylindrical quantum dot
with infinite potential confinement in the presence of a magnetic field, that is

9nlm(r)=
{
Nnlm 1F1(a01, 1, ξ) cos

(πz
L

)
0nlm(r, {λnl, βnl}) 06 ρ 6 r and|z| 6 L/2

0 ρ > R and|z| > L/2.

(5)
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In equations (5),Nnlm are the normalization constants,1F1(a01, 1, ξ) is the confluent
hypergeometric function, withξ = eBρ2/(2h̄c), a01 is the eigenvalue of the ground state
without the impurity, which is calculated numerically from the boundary condition forρ = R,

1F1(a01, 1, ξR) = 0 (6)

whereξR = γR2/2a∗2 and0nlm are the hydrogenic wave functions, corresponding tonlm

states, as proposed by Latgé et al [18]. The λnl , βnl are variational parameters used by
Chaudhury and Bajaj [19] that vary according toλnl in such a way that the orthogonalization
is preserved.

Following Greene and Bajaj [20] we calculate the binding energy of a given state9nlm by
means of

Eb,nlm = E10− 〈H(R,B,L)〉

E10 = γ (1− 2a01) +

(
a∗π
L

)2

. (7)

The binding energyEb,nlm, is a positive quantity.E10 is the ground-state energy of the
system in the absence of the Coulomb term. The expected value of the Hamiltonian (4) is the
sum of the expected values of the ‘relative’ kinetic〈T 〉, potential〈V 〉, diamagnetic〈D〉 and
paramagnetic〈P 〉 energies, that is

〈H(R,B,L)〉 = 〈T 〉 + 〈V 〉 + 〈D〉 + 〈P 〉. (8)

The meaning of the first term of the expected value of the Hamiltonian (4), taken alone,
with the gauge defined by (3), correspond to the ‘relative’ kinetic energy〈T 〉 = P 2

R/2m
∗,

wherePR is the mechanical momentum of the electron with respect to the ‘Larmor frame’
rotating aboutB with angular velocitywL = eB/2m∗.

The allowed transition energies are given by

ET (nlm→ n′l′m′) = |Eb,nlm(R,B,L)− Eb,n′l′m′(R,B,L)| (9)

and the selection rules used for the allowed transitions are [21]:

1l = l − l′ = ±1

1m = m−m′ = 0,±1. (10)

The competition between the magnetic and the geometric confinements can be visualized
by means of the relation between the cyclotronic radiusrc =

√
1/γ and the radius of the disc

R, rc/R =
√

1/R2γ . Forrc = R we have the limit for the transition from the geometric to the
magnetic confinement regime. Ifγ > 1/R2 the magnetic confinement governs the geometric
one and vice versa.

3. Results and discussions

In figure 1(a) we plot the binding energy of the 1s-like state as a function of the disc radius
for two lengths of the disc (L = 1 a∗ andL = 10 a∗) and for different values of the applied
magnetic field. We reproduce the results obtained by Liet al [14]. For small values of the disc
radius,R < a∗, the binding energy increases significantly, in a different way for the two lengths
of disc given above. As it is seen, in this situation the binding energy is relatively insensitive
to the magnetic field, because the diamagnetic energy tends to zero and the ‘relative’ kinetic
energy of the electron increases drastically surpassing the attractive potential energy of the
impurity. In this range of the disc radius and for any value of the magnetic field the geometric
confinement governs the magnetic one. The binding energy for all the radii and magnetic fields
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is higher in the disc of length 1a∗ than in the one with 10a∗ length, because the electron is
confined in a smaller volume. The donor binding energies in the quantum disc are higher than
those found in QWs and QWWs of comparable dimensions. For values of the disc radius,
R > 2 a∗, the binding energy increases with the magnetic field for all lengths of the disc.

(a) (b)

(c)

Figure 1. Binding energies of the 1s-like (a) and 2p−-like states (b) and diamagnetic energy of the
2p−-like state (c) of an on-centre donor impurity in a disc-shaped GaAs QD as a function of the
radius, for discs of lengthsL = 1 a∗ (open circles) andL = 10 a∗ (full circles), and for different
values of the applied magnetic field.

The binding energy of the 2p-like state is presented in figure 1(b) as a function of the disc
radius and for different values of the applied magnetic field and two disc lengths (L = 1 a∗

andL = 10 a∗). It is observed that the binding energy increases with the magnetic field,
and it is seen that there are two characteristic radiiRc1(B) (beyond this radius the states are
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bounded) andRc2(B) (the radius for which the binding energy reaches its maximum value).
Both characteristic radii diminish with increasingB and their values lie in the range of strong
and intermediate geometrical confinement. For QD radii,Rc1(B) < R < Rc2(B), the binding
energy increases withR and the slope of the curve becomes larger when the magnetic field
is augmented. The existence of the critical radiusRc1 is due to the strong confinement of the
wave function in the radial direction and therefore the corresponding energy is higher than the
first ionization level within the structure (the first Landau level). There is a maximum value
of the binding energy for this state forB = 10 T, in both quantum discs, because while the
diamagnetic energy increases, as shown in figure 1(c), the ‘relative’ kinetic energy diminishes
with the radius in the range 1.5 < R < 3.5. Here also, the donor binding energies are higher
than in the corresponding QWs and QWWs structures. Although the 2p+-like state is not
presented, we found that this state is bounded in a disc with length of 1a∗ and the binding
energy decreases with the magnetic field, becoming unbounded for large values of the magnetic
field. For the disc lengths we are considering, the 3p−-and the 3p+-like states are unbounded
for all values of the applied magnetic field.

In figure 2(a) we plot the binding energy versus the magnetic field, for the 1s-, 2p−-,
2p+-, 3p−-like states, in disc-shaped GaAs QDs with radius of 4a∗ and lengthsL = 1 a∗ and
L = 10 a∗, respectively. For all these states, the binding energies corresponding to the disc
of length 1a∗ are higher than in that with 10a∗ length. The binding energy of the 1s-, and
2p−-like states increases with the magnetic field. The energy of the 2p+-like state diminishes
with the magnetic field up to 1.8 T (L = 10a∗) and 3.2 T (L = 1 a∗), and the 3p−-like state is
only bounded for values of the magnetic field between 4 and 7.5 T. In figure 2(b) we plot the
E10 and the total energy of the impurity,〈H 〉, as a function of the magnetic field, for quantum
discs of lengthsL = 1a∗,L = 10a∗ andR = 4a∗. The purpose of this figure is to understand
the behaviour of binding energy of the states presented in figure 2(a). For the 2p−-like state,
the total energy〈H 〉 of the impurity presents a minimum value forB = 3.2 T andB = 2.5 T,
for quantum discs of lengthsL = 1 a∗ andL = 10a∗, respectively, because the paramagnetic
energy (negative) increases faster than the other energies of the impurity. For values larger
than 2.5 and 3.2 T of the magnetic field the total energy begins to increase due to the fact
that the ‘relative’ kinetic and diamagnetic energies augment a little faster than the potential
and paramagnetic energies. When the magnetic field is increased the difference betweenE10

and〈H 〉, becomes higher and the binding energy increases according with equation (7).E10

and〈H 〉 are presented as a function of the magnetic field for the 3p−-like state in the inset of
figure 2(b), which allows us to understand why the binding energy is only bounded for certain
values of the magnetic field.

Figure 3 shows the binding energy as a function of the impurity position along thez-
direction, for the 1s-like and 2p−-like states, for disc of radius 4.5 a∗ and 1a∗ in length. For
the two mentioned states, and for any position of the impurity along thez-axis, the binding
energy increases with the magnetic field and it has a maximum atzi = 0, and decreases as the
impurity moves from the centre to the edge of the well. This is due to the repulsive barrier
potential which pushes the electronic charge distribution away from the donor, thereby leading
to a reduced Coulomb attraction between the electron and the ion impurity.

In figure 4 we display our theoretical results for donor transitions between the 1s-like and
the 2p±-, 3p±-like states as a function of the magnetic field in disc-shaped GaAs QDs with
4 a∗ radius and withL = 1 a∗, L = 10 a∗, respectively. We compare our theoretical results
with experimental data by McCombeet al [22]. We observe that the transition energies in
the QD withL = 1 a∗ are higher than those corresponding to the QD withL = 10 a∗. For
the two QDs, the transition energies between the 1s-like and the 2p+- 3p+-like states increase
with the magnetic field. Otherwise, the transition energy between the 1s-like and the 3p−-like
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(a) (b)

Figure 2. Binding energies of the ground and some excited states (a) andE10 and〈H 〉 (b) of an
on-centre donor impurity in a disc-shaped GaAs QDs withR = 4 a∗, and lengthsL = 1 a∗ (open
circles) andL = 10a∗ (full circles), as a function of the applied magnetic field.

Figure 3. Binding energies for the ground and 2p−-like states of a donor impurity as a function of
the impurity position,zi/L, in a disc-shaped GaAs QD with radius of 4.5 a∗ and length of 1a∗.

state shows a minimum in the range of the magnetic field in which the binding energy of the
3p−-like state presents a maximum. The experimental data correspond to on-centre doped
GaAs–Ga0.7Al 0.3As quantum wells withL = 1.25a∗. For all values of the magnetic field, the
1s→ 2p− experimental values of the transition energy are between the theoretical results for
the QDs withL = 10a∗ andL = 1 a∗, as expected, bearing in mind that we are working with
a dot withR = 4 a∗, which does not exactly correspond to the experimental setup. As the
magnetic field increases the wave function is more localized and for a QD with an additional
radial confinement (R = 4 a∗) the transition energy augments, due to the large extent of the
2p−-like state. The same happens for 1s→ 2p+ transition energies in comparison with the
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experimental reports. Our theoretical results for the 1s→ 3p+ transition energy in the case of
the QD withL = 1 a∗, and for magnetic fields higher than 5 T, coincide quite well with the
experimental data (QW withL = 1.25 a∗). This is due to the fact that the strong magnetic
field, independent of the radial confinement in the QD, confines the electronic wave function
in a similar way in both structures.

Figure 4. Infrared transition energies between the 1s-like and some excited states of a donor
impurity located at the centre of a disc-shaped GaAs QD as a function of the magnetic field, and
for disc lengths ofL = 1 a∗ (open circles) andL = 10 a∗ (full circles). Experimental curves
have been taken from [20] and are indicated by full squares: a, b, and c correspond to 1s→ 2p−,
1s→ 2p+, 1s→ 3p+, respectively.

4. Conclusions

In this work, we have considered the effects of an axial-applied magnetic field on the binding
energy of some excited states and on the allowed transition energies between the 1s-like, and
the 2p−-like, 2p+-like, 3p−-like, 3p+-like states of an on-centre shallow-donor impurity in
a disc-shaped GaAs QD. In the calculations we have used the effective-mass approximation
within a variational scheme and an infinite confinement potential model for all the boundaries
of the QD. We have found that some excited states are not bounded for some values of the
radius of the QD and of the applied magnetic field. Unfortunately, it is not possible to compare
our results with experimental data, as measurements of the infrared transitions under applied
magnetic fields have not been carried out so far in QDs. Despite of this fact, we have made a
comparison with experimental reports in quantum wells [22], in order to stress the effects of the
geometrical and magnetic confinement in the allowed transitions. Also, we have found that our
results for the binding and transition energies are higher than those obtained in previous works
in GaAs QWWs [15, 16]. Considering the potential device applications of the role of impurities
in semiconducting heterostructures, we believe the present calculation will be of importance
in the quantitative understanding of future experimental work in this subject. Although this
work has been done for GaAs using the infinite potential model, its results could be used to
discuss experimental results not only in vacuum–GaAs–vacuum, but in GaAs–Ga1−xAl xAs
QDs under the action of applied magnetic fields, whenever 0.30< x < 0.45 in order to have
high enough potential barriers.
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